
Database System Concepts

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Chapter 17: Recovery System

Version: Oct 5, 2006

http://www.db-book.com/

©Silberschatz, Korth and Sudarshan17.2Database System Concepts, 5th Ed.

Chapter 17: Recovery System

 Failure Classification

 Storage Structure

 Recovery and Atomicity

 Log-Based Recovery

 Shadow Paging

 Recovery With Concurrent Transactions

 Buffer Management

 Failure with Loss of Nonvolatile Storage

 Advanced Recovery Techniques

 ARIES Recovery Algorithm

 Remote Backup Systems

©Silberschatz, Korth and Sudarshan17.3Database System Concepts, 5th Ed.

Failure Classification

 Transaction failure :

 Logical errors: transaction cannot complete due to some internal

error condition

 System errors: the database system must terminate an active

transaction due to an error condition (e.g., deadlock)

 System crash: a power failure or other hardware or software failure

causes the system to crash.

 Fail-stop assumption: non-volatile storage contents are assumed

to not be corrupted by system crash

 Database systems have numerous integrity checks to prevent

corruption of disk data

 Disk failure: a head crash or similar disk failure destroys all or part of

disk storage

 Destruction is assumed to be detectable: disk drives use

checksums to detect failures

©Silberschatz, Korth and Sudarshan17.4Database System Concepts, 5th Ed.

Recovery Algorithms

 Recovery algorithms are techniques to ensure database consistency

and transaction atomicity and durability despite failures

 Focus of this chapter

 Recovery algorithms have two parts

1. Actions taken during normal transaction processing to ensure

enough information exists to recover from failures

2. Actions taken after a failure to recover the database contents to a

state that ensures atomicity, consistency and durability

©Silberschatz, Korth and Sudarshan17.5Database System Concepts, 5th Ed.

Storage Structure

 Volatile storage:

 does not survive system crashes

 examples: main memory, cache memory

 Nonvolatile storage:

 survives system crashes

 examples: disk, tape, flash memory,

non-volatile (battery backed up) RAM

 Stable storage:

 a mythical form of storage that survives all failures

 approximated by maintaining multiple copies on distinct

nonvolatile media

©Silberschatz, Korth and Sudarshan17.6Database System Concepts, 5th Ed.

Stable-Storage Implementation

 Maintain multiple copies of each block on separate disks

 copies can be at remote sites to protect against disasters such as
fire or flooding.

 Failure during data transfer can still result in inconsistent copies: Block
transfer can result in

 Successful completion

 Partial failure: destination block has incorrect information

 Total failure: destination block was never updated

 Protecting storage media from failure during data transfer (one
solution):

 Execute output operation as follows (assuming two copies of each
block):

1. Write the information onto the first physical block.

2. When the first write successfully completes, write the same
information onto the second physical block.

3. The output is completed only after the second write
successfully completes.

©Silberschatz, Korth and Sudarshan17.7Database System Concepts, 5th Ed.

Stable-Storage Implementation (Cont.)

 Protecting storage media from failure during data transfer (cont.):

 Copies of a block may differ due to failure during output operation. To

recover from failure:

1. First find inconsistent blocks:

1. Expensive solution: Compare the two copies of every disk block.

2. Better solution:

 Record in-progress disk writes on non-volatile storage (Non-

volatile RAM or special area of disk).

 Use this information during recovery to find blocks that may be

inconsistent, and only compare copies of these.

 Used in hardware RAID systems

2. If either copy of an inconsistent block is detected to have an error (bad

checksum), overwrite it by the other copy. If both have no error, but are

different, overwrite the second block by the first block.

©Silberschatz, Korth and Sudarshan17.8Database System Concepts, 5th Ed.

Data Access

 Physical blocks are those blocks residing on the disk.

 Buffer blocks are the blocks residing temporarily in main memory.

 Block movements between disk and main memory are initiated

through the following two operations:

 input(B) transfers the physical block B to main memory.

 output(B) transfers the buffer block B to the disk, and replaces the

appropriate physical block there.

 Each transaction Ti has its private work-area in which local copies of

all data items accessed and updated by it are kept.

 Ti's local copy of a data item X is called xi.

 We assume, for simplicity, that each data item fits in, and is stored

inside, a single block.

©Silberschatz, Korth and Sudarshan17.9Database System Concepts, 5th Ed.

Data Access (Cont.)

 Transaction transfers data items between system buffer blocks and its

private work-area using the following operations :

 read(X) assigns the value of data item X to the local variable xi.

 write(X) assigns the value of local variable xi to data item {X} in

the buffer block.

 both these commands may necessitate the issue of an input(BX)

instruction before the assignment, if the block BX in which X

resides is not already in memory.

 Transactions

 Perform read(X) while accessing X for the first time;

 All subsequent accesses are to the local copy.

 After last access, transaction executes write(X).

 output(BX) need not immediately follow write(X). System can perform

the output operation when it deems fit.

©Silberschatz, Korth and Sudarshan17.10Database System Concepts, 5th Ed.

Example of Data Access

X

Y

A

B

x1

y1

buffer

Buffer Block A

Buffer Block B

input(A)

output(B)

read(X)

write(Y)

disk

work area

of T1

work area

of T2

memory

x2

©Silberschatz, Korth and Sudarshan17.11Database System Concepts, 5th Ed.

Recovery and Atomicity

 Modifying the database without ensuring that the transaction will commit

may leave the database in an inconsistent state.

 Consider transaction Ti that transfers $50 from account A to account B;

goal is either to perform all database modifications made by Ti or none

at all.

 Several output operations may be required for Ti (to output A and B). A

failure may occur after one of these modifications have been made but

before all of them are made.

©Silberschatz, Korth and Sudarshan17.12Database System Concepts, 5th Ed.

Recovery and Atomicity (Cont.)

 To ensure atomicity despite failures, we first output information

describing the modifications to stable storage without modifying the

database itself.

 We study two approaches:

 log-based recovery, and

 shadow-paging

 We assume (initially) that transactions run serially, that is, one after

the other.

©Silberschatz, Korth and Sudarshan17.13Database System Concepts, 5th Ed.

Log-Based Recovery

 A log is kept on stable storage.

 The log is a sequence of log records, and maintains a record of
update activities on the database.

 When transaction Ti starts, it registers itself by writing a
<Ti start>log record

 Before Ti executes write(X), a log record <Ti, X, V1, V2> is written,
where V1 is the value of X before the write, and V2 is the value to be
written to X.

 Log record notes that Ti has performed a write on data item Xj Xj

had value V1 before the write, and will have value V2 after the write.

 When Ti finishes it last statement, the log record <Ti commit> is written.

 We assume for now that log records are written directly to stable
storage (that is, they are not buffered)

 Two approaches using logs

 Deferred database modification

 Immediate database modification

©Silberschatz, Korth and Sudarshan17.14Database System Concepts, 5th Ed.

Deferred Database Modification

 The deferred database modification scheme records all

modifications to the log, but defers all the writes to after partial

commit.

 Assume that transactions execute serially

 Transaction starts by writing <Ti start> record to log.

 A write(X) operation results in a log record <Ti, X, V> being written,

where V is the new value for X

 Note: old value is not needed for this scheme

 The write is not performed on X at this time, but is deferred.

 When Ti partially commits, <Ti commit> is written to the log

 Finally, the log records are read and used to actually execute the

previously deferred writes.

©Silberschatz, Korth and Sudarshan17.15Database System Concepts, 5th Ed.

Deferred Database Modification (Cont.)

 During recovery after a crash, a transaction needs to be redone if and

only if both <Ti start> and<Ti commit> are there in the log.

 Redoing a transaction Ti (redoTi) sets the value of all data items updated

by the transaction to the new values.

 Crashes can occur while

 the transaction is executing the original updates, or

 while recovery action is being taken

 example transactions T0 and T1 (T0 executes before T1):

T0: read (A) T1 : read (C)

A: - A - 50 C:- C- 100

Write (A) write (C)

read (B)

B:- B + 50

write (B)

©Silberschatz, Korth and Sudarshan17.16Database System Concepts, 5th Ed.

Deferred Database Modification (Cont.)

 Below we show the log as it appears at three instances of time.

 If log on stable storage at time of crash is as in case:

(a) No redo actions need to be taken

(b) redo(T0) must be performed since <T0 commit> is present

(c) redo(T0) must be performed followed by redo(T1) since

<T0 commit> and <Ti commit> are present

©Silberschatz, Korth and Sudarshan17.17Database System Concepts, 5th Ed.

Immediate Database Modification

 The immediate database modification scheme allows database

updates of an uncommitted transaction to be made as the writes are

issued

 since undoing may be needed, update logs must have both old

value and new value

 Update log record must be written before database item is written

 We assume that the log record is output directly to stable storage

 Can be extended to postpone log record output, so long as prior to

execution of an output(B) operation for a data block B, all log

records corresponding to items B must be flushed to stable

storage

 Output of updated blocks can take place at any time before or after

transaction commit

 Order in which blocks are output can be different from the order in

which they are written.

©Silberschatz, Korth and Sudarshan17.18Database System Concepts, 5th Ed.

Immediate Database Modification Example

Log Write Output

<T0 start>

<T0, A, 1000, 950>

To, B, 2000, 2050

A = 950

B = 2050

<T0 commit>

<T1 start>

<T1, C, 700, 600>

C = 600

BB, BC

<T1 commit>

BA

 Note: BX denotes block containing X.

x1

©Silberschatz, Korth and Sudarshan17.19Database System Concepts, 5th Ed.

Immediate Database Modification (Cont.)

 Recovery procedure has two operations instead of one:

 undo(Ti) restores the value of all data items updated by Ti to their
old values, going backwards from the last log record for Ti

 redo(Ti) sets the value of all data items updated by Ti to the new
values, going forward from the first log record for Ti

 Both operations must be idempotent

 That is, even if the operation is executed multiple times the effect is
the same as if it is executed once

 Needed since operations may get re-executed during recovery

 When recovering after failure:

 Transaction Ti needs to be undone if the log contains the record
<Ti start>, but does not contain the record <Ti commit>.

 Transaction Ti needs to be redone if the log contains both the record
<Ti start> and the record <Ti commit>.

 Undo operations are performed first, then redo operations.

©Silberschatz, Korth and Sudarshan17.20Database System Concepts, 5th Ed.

Immediate DB Modification Recovery

Example

Below we show the log as it appears at three instances of time.

Recovery actions in each case above are:

(a) undo (T0): B is restored to 2000 and A to 1000.

(b) undo (T1) and redo (T0): C is restored to 700, and then A and B are

set to 950 and 2050 respectively.

(c) redo (T0) and redo (T1): A and B are set to 950 and 2050

respectively. Then C is set to 600

©Silberschatz, Korth and Sudarshan17.21Database System Concepts, 5th Ed.

Checkpoints

 Problems in recovery procedure as discussed earlier :

1. searching the entire log is time-consuming

2. we might unnecessarily redo transactions which have already

3. output their updates to the database.

 Streamline recovery procedure by periodically performing

checkpointing

1. Output all log records currently residing in main memory onto

stable storage.

2. Output all modified buffer blocks to the disk.

3. Write a log record < checkpoint> onto stable storage.

©Silberschatz, Korth and Sudarshan17.22Database System Concepts, 5th Ed.

Checkpoints (Cont.)

 During recovery we need to consider only the most recent transaction

Ti that started before the checkpoint, and transactions that started

after Ti.

1. Scan backwards from end of log to find the most recent

<checkpoint> record

2. Continue scanning backwards till a record <Ti start> is found.

3. Need only consider the part of log following above start record.

Earlier part of log can be ignored during recovery, and can be

erased whenever desired.

4. For all transactions (starting from Ti or later) with no <Ti commit>,

execute undo(Ti). (Done only in case of immediate modification.)

5. Scanning forward in the log, for all transactions starting

from Ti or later with a <Ti commit>, execute redo(Ti).

©Silberschatz, Korth and Sudarshan17.23Database System Concepts, 5th Ed.

Example of Checkpoints

 T1 can be ignored (updates already output to disk due to checkpoint)

 T2 and T3 redone.

 T4 undone

Tc
Tf

T1

T2

T3

T4

checkpoint system failure

